Schmidt, Michael

Prof. Dr.-Ing. Michael Schmidt

Department of Mechanical Engineering
Institute of Photonic Technologies (LPT, Prof. Schmidt)

Room: Raum 02.045
Konrad-Zuse-Straße 3/5
91052 Erlangen

Profile

Projects

  • Mesoskalige Brennerarrays für wasserstoffreiche Brennstoffe - Hohe Leistungsdichte, Brennstoffflexibilität und geringe Emissionen durch additive Fertigung


    (Third Party Funds Group – Sub project)
  • Koordinationsfonds


    (Third Party Funds Group – Sub project)

    Der Laser gewinnt als Werkzeug in der Produktionstechnik einen immer größeren Stellenwert, da er ein berührungsloses und hochautomatisierbares Fügen von Werkstücken ermöglicht. Eines der größten Hindernisse für die weitere Verbreitung dieses Prozesses in der Industrie stellt jedoch die Entstehung von Erstarrungsrissen in der Schweißnaht während des Fügevorgangs dar. Oberflächliche Erstarrungsrisse können mittels sensorischer Maßnahmen einfach erkannt werden. Erstarrungsrisse im Inneren der Schweißnaht lassen sich jedoch nur mit erheblichem Aufwand detektieren und können zu einem frühzeitigen Versagen des Bauteils führen. In der Literatur existieren verschiedene phänomenologische Erklärungsansätze, die immer wieder auf empirische Größen zurückgreifen. Quantitative Aussagen zu Risswahrscheinlichkeiten lassen sich jedoch mit diesen Modellen ohne experimentelle Untersuchungen nicht treffen. Abweichungen des verwendeten Werkstoffs, der zu fügenden Geometrie oder der Verarbeitungsparameter erfordern daher immer erheblichen Aufwand. Ein quantitatives Verständnis der Entstehungsmechanismen von Erstarrungsrissen ist daher unabdingbar, um das gesamte Potential des Werkzeugs Laser zu erschließen. Ziel dieser Forschungsgruppe ist es daher ein quantitatives Verständnis für diese Mechanismen zu schaffen. Dafür soll mit Hilfe eines prädiktiven, hochparallelen Simulationsframeworks der Zusammenhang zwischen Material, Prozessparametern, Bauteil und Risswahrscheinlichkeit auf allen relevanten Längenskalen quantitativ beschrieben werden. Auf der Mikroskala wird mittels stark gekoppelter chemo-thermomechanischer Erstarrungssimulationen das sich ausbildende Gefüge bei unterschiedlichen Prozessparametern vorhergesagt. Auf der Mesoskala wird die Interaktion zwischen Laser und Material in der Prozesszone räumlich und zeitlich extrem hochaufgelöst modelliert, um Temperaturgradienten, Erstarrungsgeschwindigkeiten und lokale chemische Zusammensetzung der Legierung im Schmelzbad in Abhängigkeit der Prozessparameter zu bestimmen. Durch diese Auflösung lässt sich erstmals auch der wiedererstarrende Bereich, die Mushy-Zone, explizit darstellen. Dieser Bereich wird unter der Berücksichtigung von mikrostrukturellen Effekten auch thermomechanisch modelliert. Auf der Makroskala werden mit Hilfe der auf der Mikro- und Mesoskala gewonnenen thermischen und mikrostrukturellen Informationen lokale Dehnungszustände und Risswahrscheinlichkeiten vorhergesagt. Damit werden erstmals quantitative Untersuchungen von Zusammenhängen des Werkstoffs und der Prozessparameter auf den verschiedenen Größenskalen möglich sein. Die Umsetzung dieses Ziels erfordert die Zusammenarbeit von Wissenschaftlern aus der Produktionstechnik, Materialwissenschaft und Mechanik. Um die Umsetzung und die Verzahnung dieser Modelle effizient gestalten zu können, sind zudem Wissenschaftler aus den Bereichen der Informatik und Mathematik in die Forschungsgruppe eingebunden.

  • Flexible fabrication of functional integrated coatings and structures for the reconstructive medicine using Laser Cladding of PEEK


    (Third Party Funds Single)
    For the project, a novel additive coating technology, which allows the flexible generation of functional and functional-integrated coatings and structures on metallic implants or bone material for reconstructive medicine, will be scientifically qualified. In this novel approach, Polyetheretherketon (PEEK) is processed in powder form by laser cladding, an additive manufacturing technology. PEEK offers great potential as bone substitution for reconstructive medicine because of its bone-related mechanical properties and high biocompatibility.Based on preliminary work, at first PEEK coatings are deposited on different substrate materials like metal or bone, before structures out of PEEK are generated onto the former deposited coating. Therefore, a modular, experimental setup is realisied, which enables the use of different powder feeding methods. The process is evaluated regarding the coating quality (adhesive strength, homogeneity, porosity, morphology) and by the use of high-speed cameras and a thermal imaging system. By this approach, a data base for the qualitative and quantitative analysis of different process dynamics and interactionmechanism respectively joining mechanism is developed. Additionally, material optimizations to improve the powder functionality (e.g. adhesive strength of the coating, powder feeding) are investigated. An adequate method is admixing different additives (e.g. graphite, Aerosil, bio glass) or preconditioning techniques (e.g. chemical etching, structurings, thermal pre-conditioning). The methods are qualified by their deployment in the process and diverse characterization techniques (e.g. Differential Scanning Calorimetry, integration spheres, laser scanning microscopy). The generation of coatings and structures by laser cladding of PEEK offers unique advantages and potentials for reconstructive medicine compared to other coating technologies. The flexibility of the process allows the realization of partial coatings, selectively variable layer thicknesses orstructure widths, complex three-dimensional structures and gradient coating properties as well was multi-material structures. The technology is applicable under atmosphere conditions and by using a multi-axis positioning system, a flexible guidance of the processing head is possible. Thus, substrates or objects with almost any geometry, size and surface condition can be processed.
  • Qualifizierung und Weiterentwicklung des FMP-Prozesses zur Herstellung von endkonturnahen Halbzeugen in komplexen Geometrien für den Werkzeug- und Formenbau


    (Third Party Funds Group – Sub project)
  • Optikdesign und Implementierung der Kombination aus hyperspektraler und topographischer Bildgebung Schmidt


    (Third Party Funds Group – Sub project)
  • Räumlich aufgelöste Messung des Streukoeffizienten und des Kapillarnetzwerks von Gewebe mit Hilfe eines Random Lasers


    (Third Party Funds Single)
  • Entwicklung eines innovativen Metallpulversystems für die additive Fertigung; Teilprojekt: Wissenschaftliche Untersuchung der Verarbeitbarkeit modifizierter, wasserverdüster Metallpulversysteme beim Laserstrahlschmelzen im Pulverbett


    (Third Party Funds Single)
  • Im Rahmen des Projektes soll eine nicht-invasive Methodik zur Früherkennung von Plattenepithelkarzinomem (PEC) des oberen Aerodigestivtraktes entwickelt werden.


    (Third Party Funds Single)
  • Intelligent-geregelte additive Prozesskette mittels simulativ und experimentell ermittelten Bauteil-, Werkstoff- und Prozessdaten


    (Third Party Funds Single)
  • Schmelzedynamik in der Remote-Laserstrahlmaterialbearbeitung


    (Third Party Funds Single)
  • Eutektische Al Legierungen mit angepassten Erstarrungspfaden zur Untersuchung fundamentaler Aspekte der Erstarrung in der laserbasierten additiven Fertigung


    (Third Party Funds Single)
  • Dispersions-kontrollierte Nanokomposite zur Optimierung des Schmelz- und Rekristallisationsverhaltens beim SLS mit CO2- und Diodenlasern


    (Third Party Funds Single)
  • Hochpräzise Pulverbeschichtungsanlage (HPB) - Entwicklung einer neuartigen Inlinefähigen Messmethode zur optischen Charakterisierung der Oberflächengüte in einer hochautomatisierten Pulverbeschichtungsanlage


    (Third Party Funds Single)
  • Intelligente Scannerbasierte Fokusführung beim Laserstrahlschweißen


    (Third Party Funds Single)
  • Hyperspektrale Prozessbeobachtung und Simulation zur Erweiterung des Prozessverständnisses beim Laserstrahlschmelzen


    (Third Party Funds Single)
  • Additive Fertigung einer neuen Gruppe von hochtemperaturbeständigen Legierungen


    (Third Party Funds Single)
  • Tomographie von mittels ultrakurzer Laserpulse induzierten Glasmodifikation


    (Third Party Funds Single)
  • Dreidimensionale Abbildung trüber Medien mittels hyperspektraler Bildgebung


    (Third Party Funds Single)
  • Innovative Prozesstechnik zur fehlerminimierenden, von physischem Bauteilstress befreite Handhabung von Halbleiterbauteilen im Back End Testprozess


    (Third Party Funds Single)
  • Histologische und spektroskopische Untersuchung der frühen Knorpelveränderungen bei femoroazetabulärem Impingement vom Cam Typ


    (Third Party Funds Single)
  • Lubricant free forming with tailored tribological conditions


    (Third Party Funds Group – Sub project)

    Theincreasing demand for environmentally friendly and economical processesmotivates research into lubricant-free deep drawing. This shortens the processchain by omitting the application of lubricants and the cleaning of components.The central challenges in lubricant-free forming are substantial increases infriction and tool wear due to direct workpiece-to-tool contact. In thiscontext, the objective is to reduce wear and friction by means of tool-sidedcoatings. On a newly developed application-oriented test rig, it has beenproven that these modifications are suitable for the wear-free production ofmore than 3,000 components and thus a significant increase in tool lifecompared to uncoated tools.

  • Untersuchungen zum Laserstrahlschmelzen bei Bosch


    (Third Party Funds Single)
  • Nutzung und Einführung von Additiver Fertigung mit Metall-Laserstrahlschmelzen in KMU der Mit freundlichen Grüßen+E-Industrie


    (Third Party Funds Single)
  • Advanced Optical Laser Technologies for Life Sciences and personalized Medicine (ADVENDO-LIFE)


    (FAU Funds)
    Die Erkennung von Gewebe-Erkrankungen, insbesondere Tumoren und Entzündungen zu einem frühestmöglichen Zeitpunkt für eine adäquate, personalisierte und minimalinvasive Therapie ist eines der größten Herausforderungen der modernen Medizin. Insbesondere die spezifische und hochaufgelöste Darstellung kranker Zellen und Zellverbände erfordert die Entwicklung neuer optischer Technologien an den Grenzen der Auflösung von Licht, um das für das Auge Unsichtbare sichtbar zu machen. Laser-Anwendungen erlauben schon heute die endoskopische Darstellung von Tumor-Erkrankungen, z.B. des Darmes. Dennoch sind diese noch in ihrer Spezifität eingeschränkt und erfordern den Einsatz extern zuzuführender Farbstoffe zur Visualisierung. Multiphotonen-Anregung spezieller Marker-Moleküle in Geweben kommt mitunter ohne die Notwendigkeit solcher Farbstoffe aus. Ziel des ADVENDO-LIFE Projektes soll daher die Miniaturisierung modernster Multiphotonen-Bildgebung in eine neue Generation optischer Endoskopie-Technologien sein, welche sich zur zellbasierten Darstellung erkrankter Gewebszellen und Gewebearchitektur in vivo, zunächst im Tiermodell und später für die Anwendung am Menschen in die Klinik, translatieren lässt. Hierzu wird unser interdisziplinäres Team aus Laser-Physikern, optischen Ingenieuren, Biotechnologen und Medizinern gemeinsam einen derartigen Prototyp entwickeln und validieren. Die Bildinformationen aus diesen neuen Technologien sollen die Grundlage einer morphometrischen Diagnostik-Datenbank zur „Ultrastruktur spezifischer Gewebeerkrankungen" liefern und damit künftig dem Kliniker ein neuartiges diagnostisches Tool zur Früherkennung und Verlaufskontrolle von z.B. Tumoren und chronische entzündlichen Erkrankungen an die Hand geben. Informationen zur Seite
  • Lubricant free forming with tailored tribological conditions


    (Third Party Funds Group – Sub project)
    Within lubricant free forming an intensive interaction of workpiece and tool surface occurs. The aim of this research project is the realization of dry forming processes by developing and applying innovative tribological systems. The challenges of dry forming such as increased friction accompanied by increased wear are met by tool based surface modifications in a tailored tool approach. In the first period of the project forming of steel sheets is investigated in a lubricant-free deep drawing process. In order to test the transferability of derived correlations to other workpiece material classes also an aluminum alloy is tested. In basic experiments under laboratory conditions the fundamental understanding of lubricant free forming is generated by the analysis and description of the occurring tribological effects. At the same time the test results serve as input values for the simulation based design of the segmented tool for manufacturing the demonstrator cup. In the FE simulation tribological relevant tool areas are identified. Subsequently, required surface properties for each tool segment are derived in an inverse approach. The requirements represent the targets for the development of tailored surface modifications. In order to guarantee reasonable wear resistance the suitability of DLC coating systems for lubricant free deep drawing is assessed. In some tool areas lubricant free forming requires an extraordinary high wear resistance of the coatings. In this regard the laser induced heat treatment of DLC coatings is investigated for the local enhancement of wear resistance. Furthermore, for the purpose of controlling the material flow tool based surface structures will be developed and applied by laser ablation. While developing the surface coatings and structures the frictional and wear behavior of the different modification types are investigated by carrying out model tests under laboratory conditions. In particular, the influences of the factors tool material, surface structure and coating on the tool behavior are quantified. For determination of the limits of dry forming process the interactions of tool behavior and occurring process loads are investigated in the laboratory tests. The derived correlations between the process loads, the surface modifications and the resulting tool behavior are used for the local adjustment of the tribological conditions within the lubricant free model process. In order to validate these correlations the friction and wear behavior of the segmented tool is determined in the deep drawing process for the investigated steel and aluminum grade. The results of the first period of the project represent the basis for qualification of tailored tribological systems for the application in lubricant free forming processes.
  • Additive and formative manufacturing of hybrid parts with locally adapted, tailored properties (B5)


    (Third Party Funds Group – Sub project)

    Aim of this sub-projectis to investigate the combination of additive manufacturing and formingtechnology for the production of tailored, functionalized and individualizedtitanium hybrid parts, fundamentally. Besides the sheet metal body also theadditively manufactured elements of the hybrid parts will be formed. This leadsto a defined work-hardening of the material and locally adjusted properties. Bythe spatially resolved application of additives in combination with in situalloying during Laser Beam Melting (LBM) a local material modification isintended. This modification is supposed to be adjustable to the demands of theforming operation as well as to the demands of the later use case.

  • Selective laser beam melting of composite material for lightweight structures (A5)


    (Third Party Funds Group – Sub project)

    This sub-project investigates the processing of alloysof the EN AW-6xxx group using laser beam melting into prefabricated parts. Thisrequires a fundamental understanding and control of the solidificationconditions. Using spectroscopy and hyperspectral imaging, the real temperaturesare measured, spatially and temporally resolved. Using diffractive beam formingof the laser beam intensity profile, the temperatures and thus thesolidification conditions are controlled. Furthermore, the influence ofnucleating agents is investigated and the microstructure is adjusted in adefined manner.

  • Process-adapted material characterization for laser beam melting (A3)


    (Third Party Funds Group – Sub project)

    The object of this sub-project is the scientificdetection, the quantitative determination and the development of a fundamentalunderstanding of essential material-related process variables, which explicitlydescribe the solidification behavior and the energy input during the lasermelting process of polymers. The manufacturing of components with low internalstresses and high mechanical strength requires optimized process parameterswhich are derived from the process-oriented characterization of the powder materialswith regard to their thermo-mechanical and optical properties.

Publications

2025

2024

2023

2022

2021

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

2000

1998

1997

de_DEDeutsch